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Abstract. Person re-identi�cation is now one of the most topical and
intensively studied problems in computer vision due to its challenging na-
ture and its critical role in underpinning many multi-camera surveillance
tasks. A fundamental assumption in almost all existing re-identi�cation
research is that cameras are in �xed emplacements, allowing the explicit
modelling of camera and inter-camera properties in order to improve
re-identi�cation. In this paper, we present an introductory study push-
ing re-identi�cation in a di�erent direction: re-identi�cation on a mobile
platform, such as a drone. We formalise some variants of the standard
formulation for re-identi�cation that are more relevant for mobile re-
identi�cation. We introduce the �rst dataset for mobile re-identi�cation,
and we use this to elucidate the unique challenges of mobile re-identi�cation.
Finally, we re-evaluate some conventional wisdom about re-id models in
the light of these challenges and suggest future avenues for research in
this area.

1 Introduction

Person re-identi�cation has been extensively and aggressively studied in re-
cent years by the computer vision community due to its challenging nature
and critical role in underpinning many security and business-intelligence tasks
in multi-camera surveillance [9]. This has resulted in continued improvements
in performance on increasingly challenging benchmark datasets. In essence re-
identi�cation is about successfully retrieving people by identity, enabling security
operators or higher-level software components to locate individuals. Neverthe-
less, it is conventionally formulated as a one-to-one set-matching problem be-
tween two �xed cameras, for which an e�ective model can be learned. In this
paper we present an introductory study that relaxes this core assumption and
investigates how re-identi�cation generalises to mobile surveillance platforms as
realised by quadrocopter drones [5].

Despite the successes of static CCTV cameras, we argue that considering al-
ternative surveillance equipment not only opens up exciting new research areas,
but also new ways of thinking about re-identi�cation and particularly, how re-
identi�cation �ts into real-world applications and links with other research �elds.
New technology such as remotely-operated vehicles and wearable visual sensing
equipment is becoming increasingly accessible in terms of cost and availability to
the general public. In many cases, quickly deployable mobile visual systems rival
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currently predominant static CCTV cameras in terms or resolution and frame-
rate. More critically, they intrinsically have a qualitative �exibility advantage �
in terms of being mobile � and are thus able to dynamically adapt their view-
ing position and direction without being constrained by the emplaced locations
of a CCTV camera. We term any piece of equipment that can perform video
surveillance in a portable sense, a mobile re-identi�cation platform or, MRP.

While generalising re-identi�cation to MRPs provides many new capabilities
and research avenues, it introduces some signi�cant di�erences and new chal-
lenges compared to the standard formulation of the re-identi�cation problem.
These broadly relate to the interrelated issues of (1) view ambiguity, (2) view
variability and (3) open-world re-id.

Within-view ambiguity: The �rst major contrast between MRP and stan-
dard �xed camera re-id relates to the number of views. That is, the standard
setting is typically de�ned across a pair of camera views, and within-camera
tracking is typically assumed to fully disambiguate detections within-view. In
contrast for MRPs `within camera' re-id is itself non-trivial because the cam-
era's positional and orientational mobility means that even stationary people
frequently enter and exit the view area due solely to self-motion of the plat-
form. This further generalises the so called `MvsAll' scenario described in [14]
to `AllvsAll'.

View Variability: The second major contrast is the continually varying view-
stream of a MRP compared to the conventional �xed position CCTV camera.
This is signi�cant because most of the recent performance gains in the state of
the art re-id methods have come from supervised learning of view or view-pair

speci�c models [10]. In the MRP case the continually varying view parameters
� including range, lighting, self induced motion blur and detection alignment �
precludes learning such models (see Figure 1).

Open-world: Most existing re-id studies make the simplifying assumption of
closed-world conditions. That is that there is a one-to-one set match, where ev-
eryone in the �rst camera re-appears in the second camera. No one disappears,
and no extra people appear. Although convenient for modelling and benchmark-
ing purposes, this is clearly an extremely strong assumption in practice. In the
case of MRP with within-camera re-id ambiguity, and the mobile nature of the
platform, closed-world is clearly an inappropriate assumption � meaning that
re-id with MRP is signi�cantly more ambiguous than the conventional setting.

Despite the challenges identi�ed above, MRPs provide a compelling new
ground to break for re-identi�cation science both in terms of broadening the
application area as well as providing the opportunity to reconsider several im-
plicit but strong assumptions made in most existing re-id research. In this work,
we make four main contributions: (i) We present a case for the pursuit and devel-
opment of a new research area using mobile re-identi�cation platforms (MRPs);
(ii) We formalise three novel MRP-related variants on the classic re-identi�cation
scenario; as well as associated evaluation metrics for each; (iii) We collect the
�rst public dataset for MRP re-id and establish benchmarks for each of the iden-
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Fig. 1. Illustrating key di�erences in person detection quality when automatically de-
tected from mobile re-identi�cation platform video (MRP, left), compared to detections
in a standard re-identi�cation dataset, VIPeR (right). Notably, the VIPeR images (i)
are in perfect register, (ii) feature standard walking poses from a limited number of
relative angles. Contrastingly, the MRP images are unregistered, feature more varied
pose and also occasionally heavy motion-blur because of the relative motion of the
MRP to the target person during transit.

ti�ed tasks; (iv) We elucidate the unique challenges posed by MRP re-id and
discuss their implications for general re-id research going forward.

2 Related Work

Re-identi�cation: There is now an extensive body of research on conven-
tional re-identi�cation, broadly split into contributing e�ective feature repre-
sentations [7, 33], discriminative matching models [3, 1], or both [18]. The other
major design axis typically considered is `single-shot' [3, 1, 33] (exactly one image
per person) versus `multi-shot' [7, 15, 26] (exploiting multiple images per person
where available to improve results). For a broad background of research to this
paper we suggest [10] and [31]. Going beyond conventional re-identi�cation, we
next discuss a few recently identi�ed research areas that are relevant to our MRP
context.

Open-world Re-Id: At its most general, open world re-identi�cation [9] ad-
dresses relaxing several assumptions: one-to-one set-match (that is, that every
person in the probe set appears in the gallery set and vice-versa) [13]; the as-
sumption of matching between only two cameras [13]; the assumption of a known
number of people; or the assumption that multi-shot grouping is known a-priori
[14]. A few studies have begun to work toward this including [13, 14]. However,
these have generally considered only a couple of these relaxations at once. In
contrast, the MRP re-id scenario is intrinsically open-world: self movement in
a potentially open-space means one-to-one match situations are unlikely, self-
motion means that tracking cannot provide multi-shot grouping, and clearly the
person count of an arbitrarily surveilled space is not known in advance.

Generalised-view Re-Id: The conventional approach to maximising re-id
performance is learning a discriminative model to maximise re-id rate for a spe-
ci�c pair of �xed camera views [3, 1]. A few studies have started to consider
how re-identi�cation models generalise across views [19] and generally found
that they don't � achieving good re-id rate requires view speci�c discriminative
training. This re�ects analogous conclusions drawn more broadly in computer
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vision recognition [30]. As a result, studies have begun to develop transfer strate-
gies that allow models learned from `source' view pair(s) to be adapted to better
apply in a new `target' view [4, 19, 22] which may have di�erent position, light-
ing, etc. These studies have generally considered combining [4] or adapting [19,
22] source model(s) to construct the model for a new domain � with the general
aim of reducing or eliminating the need for collecting annotated training data for
every pair of cameras. The important contrast with our MRP context is that do-
mains/camera pairs as described above are discrete. In contrast, the video feed
from a MRP is a continuously varying domain. This means that for previous
approaches to view generalisation it is still assumed that enough data to model
a speci�c view or view pair can be collected and a discriminative model learned.
This is no longer feasible for MRP, since the constantly varying view means
that collecting (let alone annotating) extensive view-speci�c data is impossible,
and the conventional strategy of learning a discriminative model is called into
question.

Drones: A full discussion of background research in drone technology is out
of the scope of this paper, but see [5] for an introduction and background to
drones and their capabilities. The central issue for drones to become more useful
for surveillance tasks is for them to become increasingly autonomous, and a
signi�cant component of this is learning to maintain consistent person identity
estimates over time, which we address here.

3 Re-identi�cation Problem Variants and Metrics

Conventional re-identi�cation is used as a forensic search tool, or as a module
by higher-level software � such as inter-camera tracking [25]. For ease of model
formulation (e.g., metric learning, SVM ranking), evaluation and establishing
benchmarks, most studies formalise re-id as a closed-world set match between
two speci�c cameras. As a result the typical evaluation metric is Rank 1 accuracy
(the % of perfect gallery matches for each probe image), or the CMC curve (the
% of correct matches within the top N ranked matches, for varying N) [32]. In
this section we describe three distinct variants of the re-identi�cation problem
that naturally arise with MRPs � each based on intuitive application scenarios
for a MRP. Table 1 summarises the problem variants proposed and compares
them with classical approaches to re-id.

3.1 Watchlist Veri�cation

In the watchlist task, the MRP is patrolling an area and the goal is to detect if
any person encountered is somebody on a pre-de�ned watch-list. For the moment
we make no assumption on whether the MRP is manually controlled, has a pre-
programmed travel path or autonomously wanders. However, we assume that the
scenario is passive sensing � the MRP is not going to to take action based on
any detected matches. The watchlist itself could come from a variety of sources:
a pre-de�ned mug-shot gallery; a transmitted detection from another MRP or
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CCTV camera; or a previous detection saved by the current MRP on a previous
�ight or earlier in this patrol. For example the MRP may be trying to track down
a speci�c person previously identi�ed performing a suspicious action of interest.

In this case, the `probe' is a single person from the watch list, and the `gallery'
is all people observed in a patrol. In contrast to conventional re-id, this is a more
open world problem in that: (i) the probe person may not appear anywhere in
the patrol video (no match is an option), (ii) (most) people in the patrol video are
not on the watchlist (many background distractors), and (iii) the total number
of detected instances of the true match if present in the gallery/patrol video is
unknown (not one-to-one). In Table 1 this is illustrated under match by [N] and
[M] re�ecting multiple potential ungrouped matches and distractors respectively.

Given these considerations, the right evaluation metrics for this problem are
information-retrieval style metrics, thus we use a suite of them: (i) the rank of
the true matches, and (ii) precision-recall curves and associated summaries �
average-rank and average-precision.

3.2 Within-Flight Re-Identi�cation

In the within-�ight re-identi�cation task, the MRP's goal is to maintain consis-
tent identity of person detections recorded throughout the �ight. Due to both
platform and target motion, a particular target may enter the view once, or en-
ter and exit the view multiple times throughout the �ight. In this case there is
only one "camera view" as compared to conventional re-id setting of two �xed
cameras. However, it means that: (i) the platform motion can create potentially
more view-variation over time than occurs between two �xed CCTV cameras, so
"within-view" re-identi�cation can become even harder than conventional re-id;
(ii) as before, there is a general open-world identity inference problem.

The general identity inference problem here means that there is no-longer a
notion of probe and gallery. Instead there is a list of N detections, which each
need to be assigned one of K ≤ N unique identities. However K (the number
of unique people in the scene) is itself unknown. In Table 1 this is illustrated
under match by [N] � the single set of detections with unknown grouping � and
an unknown person count.

Evaluating this open world identity assignment is non-trivial compared to
closed world. To fully evaluate the performance, we use statistical analysis on all
pairs of detections to measure pairwise Precision and Recall. Speci�cally given
all true Lgt and estimated Lest labels of the N detections. A `true' pair i, j has
the same label, and a `false' pair have di�erent labels. Thus true-positive, true-
negative, false positive and false-negative rates can be computed as in Eq. (2);
which can in turn be summarised in terms of Precision, Recall, Speci�city, and
Accuracy as in Eq. (1).
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Setting Cameras Match Person Count View-speci�c Multi-shot Evaluation
Singleshot [7, 33, 3, 1] 2 N : N Known Yes No Rank 1, CMC
Multishot [7, 15] 2 N : N Known Yes Grouped Rank 1, CMC
Karaman [14] 2 N : [N ] Known Yes Group : No group Accuracy
John [13] 2 N +M1 : N +M2 Known Yes No Rank 1
Watchlist 1 1 : [N ] + [M ] N/A No No group Rank, Prec+Recall
Within 1 [N ] Unknown No No group F-measure
Across 2 [N ] + [M1] : [N ] + [M2] Unknown No No group F-measure

Table 1. Contrasting re-identi�cation problem variants. Match: N : N re�ects closed
world one-to-one mapping among N people in view 1 : view 2. [N ] indicates un-
known within-camera grouping. M represents the unknown fraction of the people to
be matched who are distractors in that they do not occur in the other view or the
watchlist.

Prec = TP/(TP + FP )

Rec = TP/(TP + FN)

Spec = TN/(FP + TN)

Acc = (TP + TN)/N (1)

TP =
∑
ij

(Lgt(i) = Lgt(j)) ∧ (Lest(i) = Lest(j))

TN =
∑
ij

(Lgt(i) 6= Lgt(j)) ∧ (Lest(i) 6= Lest(j))

FP =
∑
ij

(Lgt(i) 6= Lgt(j)) ∧ (Lest(i) = Lest(j))

FN =
∑
ij

(Lgt(i) = Lgt(j)) ∧ (Lest(i) 6= Lest(j)) (2)

3.3 Across-�ight re-identi�cation

The across-�ight problem is somewhat more related to the classic problem of
between-camera re-id. In this case identities should be matched across two sep-
arate MRP �ights. This may be from either the same platform making two
patrols, or two distinct and communicating platforms trying to coordinate iden-
tities. It is a fully open-world problem, given that within-�ight/view tracking
cannot be assumed for MRPs (ungrouped detections in Table 1), and that only
an unknown subset of the total people in each view may be shared (in Table 1, N
shared + M distractor people in each view). However, compared to within-�ight
re-identi�cation, it may be somewhat harder because the environments across
space and/or time may be even more di�erent than the view change caused by
platform motion in the previous case. Again, statistical analysis is the appropri-
ate evaluation technique.

4 Methodology and Experimental Setting

4.1 Data acquisition

Drone Setup We use a standard remote-operated quadrocopter to realise our
MRP for data acquisition. During data collection, a human operator controlled
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OUTDOOR FLIGHT 

INDOOR FLIGHT 

Fig. 2. Flight path detail (center) and images of the drone used in our experiments
indoors (left) and outdoors (right).

the drone via laptop using the Robot Operating System (ROS1) to ensure re-
sponsive handling with the control loop and sensor data capture operating at
≈ 200Hz whilst video from the quadrocopter was sampled at ≈ 1−5Hz. For this
particular commodity platform, �ight time was limited by battery capacity to
≈ 10 minutes per �ight at 640x360 pixels.

During �ight, a heads-up-display (HUD) is overlaid on top of the video feed
displaying standard sensor information (such as yaw, pitch, acceleration, bat-
tery and altitude), as well as real-time person detections and person detection
con�dence scores. This in some sense serves to provide the operator with the vi-
sual cues necessary to weakly simulate an active-sensing, fully autonomous (i.e.
closed-loop) drone. If the drone is orientated poorly towards a person or the
person is partially occluded then a poor detection will result and the operator
can adjust the relative orientation and position of the drone based on this visu-
alisation until a strong detection can be obtained. Some examples of the HUD
can be seen in Figure 3.

Person detection Given the 1−5Hz video feed, the next task is to obtain per-
son detections. To maximise the reliability of this step, we �rst apply a corrective
transform on each frame to correct for the `roll' of the drone (using data recorded
from the MRP's onboard accelerometer sensor), since the detection models as-
sume people to be upright. In order to detect people fast enough for real-time
visualisation so as to assist the MRP's operator, we employ [6]'s toolkit which
provides excellent computational e�ciency and detection quality. At extraction
time, we resample detections to [128x48] pixels2. We threshold detections and
discard any with a con�dence of below 20% since the environments from which
we will be detecting are extremely varied with respect to lighting and pose and
we wish to limit the number of potential false-positive detections whilst retain-
ing most true detections. For our visual features we employ the commonly used

1 http://www.ros.org/
2 However, note that the original resolution and therefore resample quality will vary
dramatically over time within a �ight, see Figure 1.
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Fig. 3. Screen captures from our mobile re-identi�cation platform's data capture ses-
sions; illustrating real-time person detections colour-coded by detection con�dence.
The top-left and top-right images illustrate typical operator views from the outdoor
and indoor �ights from Dataset 1; The bottom row illustrates Dataset 2.

ensemble of local features [11] (ELF), which encodes both color and texture in
6 horizontal strips [24] for �nal features of 2784 dimensions.

Datasets Using the procedure described above, we collected two multi-�ight
datasets. Dataset 1: The �rst dataset contains three �ights worth of data,
across an outdoor and indoor environment. These consisted of 436, 652, 848
video frames, from which we obtained 233, 471, and 797 person detections from
6, 7, and 10 distinct people (after thresholding). All person detections in this
dataset are exhaustively annotated. Dataset 2: The second, signi�cantly larger,
dataset contains six �ights of data in three di�erent unconstrained and heavily
crowded outdoor environments. Across each �ight there are between 10,000 and
30,000 frames of video data and an average of 8,654 person detections from an
unknown number of distinct people. Of this data, we selected a single �ight and
exhaustively annotated 28 unique identities within the 4096 detections available
within a 2:06 window3.

4.2 Classi�er training, Representation and Datasets

Training Strong Models One of the central questions we wanted to answer is
to what extent the state of the art discriminative models for standard benchmark
datasets are e�ective for MRP based re-identi�cation. This question is crucial

3 All datasets and annotations will be realised on the web at http://qml.io/rlayne
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because conditions in MRP-sourced video data continuously change during a
�ight thus there are many more combinations of pose and viewing angle than
in the �xed view case assumed by most state of the art models � i.e. a �xed
view with enough (annotated) data is su�cient to learn a model. It is therefore
critical to discover if and how much performance discriminative models lose on
dynamically changing data.

We investigate this by training a selection of strong discriminative models
including one of the most popular: RankSVM [24]; and two recent state of the
art approaches BR-SVM [2] and KISS [17]. We train these models on a variety of
large benchmark datasets including VIPER [27] (632 distinct persons in [128x48]
crops), PRID [12] (200 distinct persons), GRID [21] (250 persons) and CUHK
[20] (971 persons). We resample all detections to match VIPeR's dimensions. For
the computationally intensive discriminative methods, we reduce the dimension
with PCA to d = 200 for BR-SVM and d = 34 for KISS as speci�ed in [17].

Domain Shift Since we assume a stationary view and the absence of live-
annotation of video-feed data (as proxies for normal discriminative training on a
single-view), the only way to apply trained matching models for MRPs is to train
them on benchmark datasets before testing them on the MRP video feed. This
potentially opens up the issue of domain shift [8, 23, 19] between the training
and testing data. For example, due to additional chance of motion blur, mis-
registered images and more variance in pose from the MRP detections (Figure
1), which are absent in VIPER.

As a preliminarily investigation into how to overcome this issue, we consider
unsupervised domain-adaptation in order to better align the target MRP dataXt

and source VIPeR training dataXs. That is, warp p(Xt) so that it is more aligned
with the source training data padapt(Xt) ≈ p(Xs), with the intuition that this
should allow classi�ers trained onXs to generalise better toXt [23]. In particular,
we align the projected subspaces of the two datasets, using the geodesic �ow
kernel domain adaptation (DA) method [8] using dDA = 13 dimensions..

4.3 Re-identi�cation and baselines for comparison

For Task 1: Watchlist, we simulate this experiment by taking each person de-
tection in turn as the watch-list, and matching it against every other detection
from the �ight to produce a ranked list. The ranked list of results is then eval-
uated for relevance with information retrieval metrics (Sec 3.1). Whether �rst,
average or last rank; or average precision is the most relevant metric will depend
on the end-user application and cost function. We evaluate this task with both
Datasets 1 and 2. For Task 2: Intra-�ight re-identi�cation and Task 3:
Inter-�ight re-identi�cation (Sec 3.2-3.3), the experiment is performed by
matching every detection against every other detection. The resulting detection-
a�nity matrix is thresholded4 and analysed for connected components [29]. Each
connected component de�nes an estimated person. The estimated Lset and true

4 The threshold is chosen to optimise F-measure for each model.
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Lgt identities are compared using statistical analysis as explained in Section 3.
We evaluate these tasks with Dataset 1. As algorithms to produce the matching
scores for each experiment, we compare the following models:

NN-[DA] Nearest-neighbor (NN) matching based on the detection descriptor.

BR-SVM-[DA] Binary-relation SVM with RBF concatenation kernel [2].

RankSVM-[DA] SVM with di�erence feature and linear kernel [24].

KISS-[DA] State of the art discriminative Mahalanobis metric learning [17].

In each case we compare the model with and without domain adaptation (-DA
su�x). As explained earlier, we do not have annotated view-speci�c training
data. Thus, we train the latter three discriminative models on the full VIPER
dataset of 632 pairs and test them on the MRP video detections. These models
obtain good results when applied within-domain on VIPER [2, 24, 17], however
our experiment will test their ability to generalise this knowledge to a continu-
ously varying view.

5 Experiments

5.1 Watchlist and Re-identi�cation evaluations

We �rst present the results for the three main tasks before drawing conclusions
from them.
Task 1: Watchlist The results of watchlist veri�cation are presented in Ta-
ble 2(a) for Dataset 1, and Table 2(b) for Dataset 2. This task re�ects how highly
true matches to each particular watchlist person are ranked relative to all the
other person detections in the dataset, on average. Clearly all methods perform
better than random: average rank, for example, has a chance level of half the
number of detections across all �ights which is 500/2 = 250 for Dataset 1 and
4046/2 = 2023 for Dataset 2. The best methods obtain a �rst rank result of
around 2. Surprisingly, this is the case both in the smaller Dataset 1 and the
larger Dataset 2.

Task 2: Intra-�ight re-identi�cation Intra-�ight re-id results for Dataset 1
are presented in Table 3(a). This task attempts un-constrained detection asso-
ciation across all detections within a �ight.

Task 3: Inter-�ight re-identi�cation Intra-�ight re-id results for Dataset 1
are presented in Table 3(b). This task attempts un-constrained detection asso-
ciation across all detections from a pair of �ights.

5.2 Observations and Analysis

Based on the results described in the previous section and Tables 2-3, we make
the following observations and conclusions.
(1) NN is best overall � Surprisingly, outperforming all discriminative meth-
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Dataset 1 NN NN-DA KISS KISS-DA BRSVM [1] BRSVM [1] DA RankSVM [24] RankSVM [24] DA
First rank ↓ 2.08 4.69 4.15 5.37 12.32 15.87 9.76 17.53
Last rank ↓ 167.93 162.89 156.70 150.82 166.35 160.78 177.32 170.37

Average rank ↓ 56.30 56.47 54.45 57.39 65.65 68.77 76.81 81.51
Average Prec ↑ 0.46 0.46 0.43 0.41 0.34 0.35 0.24 0.24

Dataset 2 NN NN-DA KISS KISS-DA BRSVM [1] BRSVM [1] DA RankSVM [24] RankSVM [24] DA
First rank ↓ 1.91 2.47 18.02 9.89 265.59 18.87 280.57 424.64
Last rank ↓ 1864.34 2001.95 2152.18 2032.83 2841.16 2238.77 2673.06 3357.40

Average rank ↓ 507.30 528.85 619.78 635.10 1256.77 753.53 1213.27 1848.23
Average Prec ↑ 0.36 0.34 0.19 0.25 0.04 0.14 0.04 0.02

Table 2.Watchlist veri�cation results for each model. Top: Dataset 1, results are aver-
ages over all persons and all �ights, average 500.3 total detections. Bottom: Dataset 2,
results are for single annotated �ight, 4046 total detections. For the rank metrics lower
is better (↓) and for the average precision metric higher is better (↑).

Precision ↑ Recall ↑ F-Measure ↑ Speci�city ↑ Accuracy ↑ Precision ↑ Recall ↑ F-Measure ↑ Speci�city ↑ Accuracy ↑
NN 0.83 0.29 0.39 0.99 0.88 0.34 0.49 0.29 0.63 0.60

NN DA 0.47 0.59 0.47 0.76 0.73 0.38 0.39 0.32 0.80 0.74
KISS [17] 0.32 0.30 0.28 0.82 0.74 0.15 0.93 0.26 0.09 0.21

KISS [17] DA 0.23 0.59 0.31 0.56 0.56 0.15 0.97 0.26 0.04 0.18
BRSVM [1] 0.37 0.27 0.18 0.79 0.70 0.15 1.00 0.26 0.00 0.15

BRSVM [1] DA 0.32 0.23 0.17 0.85 0.74 0.15 1.00 0.26 0.00 0.15
RANKSVM [24] 0.00 0.65 0.17 0.35 0.38 0.15 0.98 0.26 0.03 0.17

RANKSVM [24] DA 0.00 0.36 0.12 0.64 0.58 0.15 0.98 0.26 0.03 0.17

Table 3. Re-identi�cation results for Dataset 1: (left) Intra �ight, and (right) Inter
�ight. In each case Precision, Recall and F-measure are averaged across all three �ights.
Higher is better for all metrics.

ods including KISS, BRSVM and RankSVM. In dramatic contrast to the stan-
dard ordering of results obtained in the literature [3, 1, 24], where discrimina-
tively trained models signi�cantly outperform simple nearest-neighbour; our re-
sults show that in the MRP context, the simplest NN method is generally best.
This is true overall for Dataset 1 with all three tasks, as well as the signi�cantly
larger Dataset 2 for the watchlist task. This is due to the intrinsic challenge of
MRP re-id that there is no possibility to learn view-speci�c models.

In order to apply discriminative models to our MRP data, we transferred
models trained on VIPER. However, this may not be e�ective because the MRP
video is more variable and unconstrained. Meanwhile, the strong discriminative
models have evidently over �tted to the more constrained viewing conditions
in VIPER. NN, in contrast, is more reliable because it doesn't train a strong
discriminative model and thus cannot over �t in this sense.

(2) Simpler models are better overall The overall ordering of the results
is NN > KISS > BRSVM . This generally re�ects the model complexity, with
NN being the simplest. BRSVM being the most complex (due to RBF kernels
on concatenated data), and KISS being in between. This ordering also re�ects
the importance of pairwise training data volume to the model, with KISS and
BRSVM both requiring fairly large volumes of training data from the same view
in order to perform well.
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First rank ↓ Last rank ↓ Mean rank ↓ Av Prec ↑
KISS (ED) 1.66 64.44 20.79 0.57

KISS-DA (ED) 3.29 60.68 21.40 0.56
KISS 1.25 81.31 25.90 0.53

KISS-DA 3.50 81.65 30.08 0.35
Table 4. Attempting to improve the performance of KISS [17] on the watchlist task
by training on all available data (ED). Results are from a single �ight in Dataset 1.

(3) Domain adaptation can help � but it helps NN signi�cantly more
than discriminative models. Comparing the vanilla condition of each model
with the domain adaptation condition (-DA su�x), we see that domain adapta-
tion doesn't make much consistent di�erence for the watchlist experiment (Ta-
ble 2), but it sometimes makes a signi�cant di�erence in the re-identi�cation
experiment (Table 3). However, KISS for example is improved from mAP of 0.28
to 0.31 with domain adaptation; while NN is improved much more signi�cantly
from mAP of 0.39 to 0.47. That domain-adaptation can help is in one sense not
surprising (the MRP video has di�erent statistics to VIPER and aligning the
distributions should help), but in another sense surprising (the MRP video is
only a domain in a very limited sense � because the view varies so much there is
hardly a consistent set of statistics p(Xt) to adapt toward). Meanwhile, the fact
that it helps NN more than KISS is understandable because KISS still su�ers
from over �tting to the particular source data (VIPER).
(4) Discriminative models cannot be "�xed" for MRP by adding more

conventional training data. The signi�cance of the previous results � with
respect to limitations of the discriminative models � could be questioned on the
grounds of whether VIPER data is representative enough for the variety of views
obtained by the MRP. To test this, we re-trained the KISS model using the union
of the four largest benchmark re-id datasets to date, including VIPER, CUHK,
GRID and PRID, thus greatly increasing the volume and variety of data used.
Table 4 compares the watchlist veri�cation results when training KISS only on
VIPER versus training on all existing datasets (ED su�x). Clearly using all the
extra data makes only a minor di�erence to the performance.

5.3 Person Count Evaluation

As a �nal example application, we perform person counting on the �ight videos.
This is computed as a by-product of open-world re-identi�cation: each identi�ed
connected component of the detections de�nes a distinct person. In general NN
and NN-DA provide a near best or best estimate in each case, as seen in Table
5.
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Actual NN KISS BRSVM NN-DA KISS-DA BRSVM-DA RankSVM
Flight1 6.0 ±16.0 ±23.0 ±79.0 ±7.0 ±20.0 ±37.0 ±102.0
Flight2 7.0 ±0.0 ±0.0 ±5.0 ±1.0 ±3.0 ±2.0 ±2.0
Flight3 10.0 ±40.0 ±13.0 ±1.0 ±6.0 ±92.0 ±3.0 ±27.0
Average 7.7 ±18.7 ±12.0 ±28.3 ±4.0 ±38.3 ±14.0 ±42.3

Actual NN KISS BRSVM NN-DA KISS-DA BRSVM-DA RankSVM
Flight1≶2 7.0 ±5.0 ±0.0 ±38.0 ±0.0 ±0.0 ±74.0 ±48.0
Flight2≶3 10.0 ±0.0 ±13.0 ±21.0 ±6.0 ±5.0 ±0.0 ±1.0
Flight1≶3 10.0 ±0.0 ±6.0 ±0.0 ±3.0 ±7.0 ±84.0 ±226.0
Average 9.0 ±1.7 ±6.3 ±19.7 ±3.0 ±4.0 ±52.7 ±91.7

Table 5. Person counts in Dataset 1. Result for each method is shown as the average
error between the estimated and true count. (Lower is better) (upper) Intra-�ight
condition, (lower) Inter-�ight condition.

6 Discussion

6.1 Summary and Key Results

Based on the experiments and analysis in the previous section, we drew the
following conclusions: 1. NN is the best method for MRP re-id, 2. In general
simpler methods outperform more complex methods, 3. Unsupervised domain
adaptation can improve MRP re-id, 4. The challenge is intrinsic to the nature
of benchmark datasets being captured by static cameras, and the MRP dataset
being captured by a dynamic camera.

6.2 Implications for future work

Given these insights, we highlight the following implications for future work:

1. Current re-id research has been too focused on learning dataset speci�c mod-
els, leading to dataset bias [30]. Analogous to research trends in more gen-
eral computer vision [16], developing methods that avoid bias and generalise
across datasets is necessary to fully exploit the potential of reid to MRPs.

2. Domain adaptation methods can potentially help adapt re-id methods across
scenarios with di�erent data statistics. However while most domain adapta-
tion methods require some supervision in the target domain, it is important
that DA methods used in this context are unsupervised, since live annota-
tion of MRP detections is implausible. In the current results, a completely
disjoint unsupervised DA module [8] is able to make an impact. Investigating
tighter integration of the DA and re-id mechanism is likely to be fruitful.

3. Conventional re-id and DA [8] methods assume the target task is a distinct
and discrete context. The continually varying nature of MRP view, and hence
data statistics, means that it may be important to treat MRP as an online
rather than a discrete adaptation process. This is a somewhat unique aspect
of DA for re-id in contrast to more general vision problems [30, 16].
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4. Consideration of the MRP task highlights the intrinsically open-world nature
of re-id which has largely been ignored for convenience by prior research. In
this study we addressed this by a very simple strategy of threshold learning.
However, more e�ort should be put toward developing more systematic and
optimal methods to resolve open-world ambiguity.

5. Our new continuously-varying view dataset has a total of 51,922 uncon-
strained person detections across six �ights resulting in hundreds of identi-
ties that partially overlap across three outdoor zones. This challenging MRP
dataset is qualitatively di�erent to existing re-id datasets, and will help drive
the research challenges identi�ed above.

6.3 Potential Applications

Finally, given the partial success obtained so far, we discuss some speculative
applications for MRP technology.
Open vs. Closed-loop MRP: Our �rst re-identi�cation case for MRP is an
open-loop scenario where the re-identi�cation task does not directly have any
impact on the travel path of the vehicle; but data from the vehicle still enables
analysis and detection albeit in a passive sense. In this mode of operation, the
MRP will likely either be under control of a human operator, or will follow a
set of precon�gured waypoints along a patrol-route, with the video sensor data
available for analysis either in near real-time, or after the MRP has returned
home. This is conceptually closest to the standard re-identi�cation problem.
In contrast, closed-loop MRP control may be fully or semi-automated and crit-
ically, may permit the MRP to automatically adapt a regular patrol-route or
journey for optimal performance on speci�c re-identi�cation tasks. For example,
re-id quality-control to move the MRP to get a better view when current re-id
is too ambiguous [26]. For a given �ight time or length, this then leads into an
interesting trade-o� between re-id accuracy of each individual versus coverage:
the fraction of total people captured in a zone in total [28].
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